toolsmith #128 – DFIR Redefined: Deeper Functionality for Investigators with R – Part 1

“To competently perform rectifying security service, two critical incident response elements are necessary: information and organization.” ~ Robert E. Davis

I’ve been presenting DFIR Redefined: Deeper Functionality for Investigators with R across the country at various conference venues and thought it would helpful to provide details for readers.
The basic premise?
Incident responders and investigators need all the help they can get.
Let me lay just a few statistics on you, from Secure360.org’s The Challenges of Incident Response, Nov 2016. Per their respondents in a survey of security professionals:

  • 38% reported an increase in the number of hours devoted to incident response
  • 42% reported an increase in the volume of incident response data collected
  • 39% indicated an increase in the volume of security alerts

In short, according to Nathan Burke, “It’s just not mathematically possible for companies to hire a large enough staff to investigate tens of thousands of alerts per month, nor would it make sense.”
The 2017 SANS Incident Response Survey, compiled by Matt Bromiley in June, reminds us that “2016 brought unprecedented events that impacted the cyber security industry, including a myriad of events that raised issues with multiple nation-state attackers, a tumultuous election and numerous government investigations.” Further, “seemingly continuous leaks and data dumps brought new concerns about malware, privacy and government overreach to the surface.”
Finally, the survey shows that IR teams are:

  • Detecting the attackers faster than before, with a drastic improvement in dwell time
  • Containing incidents more rapidly
  • Relying more on in-house detection and remediation mechanisms

To that end, what concepts and methods further enable handlers and investigators as they continue to strive for faster detection and containment? Data science and visualization sure can’t hurt. How can we be more creative to achieve “deeper functionality”? I propose a two-part series on Deeper Functionality for Investigators with R with the following DFIR Redefined scenarios:

  • Have you been pwned?
  • Visualization for malicious Windows Event Id sequences
  • How do your potential attackers feel, or can you identify an attacker via sentiment analysis?
  • Fast Frugal Trees (decision trees) for prioritizing criticality

R is “100% focused and built for statistical data analysis and visualization” and “makes it remarkably simple to run extensive statistical analysis on your data and then generate informative and appealing visualizations with just a few lines of code.”

With R you can interface with data via file ingestion, database connection, APIs and benefit from a wide range of packages and strong community investment.
From the Win-Vector Blog, per John Mount “not all R users consider themselves to be expert programmers (many are happy calling themselves analysts). R is often used in collaborative projects where there are varying levels of programming expertise.”
I propose that this represents the vast majority of us, we’re not expert programmers, data scientists, or statisticians. More likely, we’re security analysts re-using code for our own purposes, be it red team or blue team. With a very few lines of R investigators might be more quickly able to reach conclusions.
All the code described in the post can be found on my GitHub.

Have you been pwned?

This scenario I covered in an earlier post, I’ll refer you to Toolsmith Release Advisory: Steph Locke’s HIBPwned R package.

Visualization for malicious Windows Event Id sequences

Windows Events by Event ID present excellent sequenced visualization opportunities. A hypothetical scenario for this visualization might include multiple failed logon attempts (4625) followed by a successful logon (4624), then various malicious sequences. A fantastic reference paper built on these principle is Intrusion Detection Using Indicators of Compromise Based on Best Practices and Windows Event Logs. An additional opportunity for such sequence visualization includes Windows processes by parent/children. One R library particularly well suited to is TraMineR: Trajectory Miner for R. This package is for mining, describing and visualizing sequences of states or events, and more generally discrete sequence data. It’s primary aim is the analysis of biographical longitudinal data in the social sciences, such as data describing careers or family trajectories, and a BUNCH of other categorical sequence data. Somehow though, the project page somehow fails to mention malicious Windows Event ID sequences. 🙂 Consider Figures 1 and 2 as retrieved from above mentioned paper. Figure 1 are text sequence descriptions, followed by their related Windows Event IDs in Figure 2.
Figure 1
Figure 2

Taking related log data, parsing and counting it for visualization with R would look something like Figure 3.

Figure 3
How much R code does it take to visualize this data with a beautiful, interactive sunburst visualization? Three lines, not counting white space and comments, as seen in the video below.